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ABSTRACT 

 

Every day we rely on various integral parts of infrastructure to function as a society. 

These infrastructures, such as power, water, and roads, are all abstract representations of 

networks. Each of these networks is monitored so that their usability and functionality 

remain intact. SnoScan is a service scanner for computer networks to allow the constant 

monitoring and notification of their status with regards to their functionality. While there are 

many open source service scanners available, they will simply tell you if the service is 

present or not, but can not recognize an error in functionality. By testing for functionality, an 

in-depth picture of the status of the network can be revealed and present errors to 

administrators that would otherwise go unnoticed. A functionality service scanner is only 

useful when the relevance and importance of knowing the functionality is significant to the 

service in question. If it is enough to say that if the service is present, the service is intrinsic 

and requires no further testing. However, if knowing the service is present does not give 

sufficient evidence that the service is working as intended, further testing of the system is 

required. SnoScan is intended to monitor computer networks by emulating user behavior and 

initiating status checks to various services typically hosted in a home or business setting. 

Knowing that the service is functionally sound will provide more relevant information than a 

standard service scanner and ultimately a more stable network. 



www.manaraa.com

 1  

 

CHAPTER 1.  INTRODUCTION 

With networks becoming larger and more interconnected, the increasing points of 

failure grow exponentially. Services are provided as a product to customers and as such 

must be held accountable for their availability, reliability, and security. Each user must be 

able to put their trust into the service, relying on it to perform various tasks. Most of these 

systems are passively monitored so that there is reliability of service and metric data to 

support claims of stability. If a corporation relies on its database systems to function 

properly, they put effort into making sure that system is as robust as possible. It is simply 

not enough to know if the system is present on the network, but to tell if it is working as 

functionally expected. It is useful to know a simple binary explanation of whether or not the 

service is available, but a deeper view gives a better diagnosis as to what is happening on the 

network. A good example would be if someone has a pulse, it means their heart is beating, 

but it does not tell you if it is functioning properly. The same can be said for a web server. If 

the web server returns an ACK packet from port 80, it does not necessarily mean that it is 

functioning as expected.  While if the pulse or the ACK packets are absent, that is a problem 

and very important deduction, but it does not identify the underlying cause. 

SnoScan was created to deal with the increasing difficulty of monitoring 

functionality of services instead of status of services. The first implementation was 

developed for the Internet Scale Event and Attack Generation Environment (ISEAGE) at 

Iowa State University. ISEAGE allows us to host multiple networks within a contained 

environment for testing purposes of various software and hardware configurations. This 

allows us to focus on testing these machines with no external interference.  This paper will 
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detail the pitfalls of common service scanners, detail how SnoScan performs functionality 

tests, model the various types of tests and how the data is represented, and the limitations of 

a functionality service scanner. First, I will go into detail about what a service scanner is and 

does, comparing current open source implementations of service scanners, their 

effectiveness and ultimately their downfalls. It is important to note the importance of their 

limitations help differentiate the difference between functionality service scanning and 

status service scanning.  
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CHAPTER 2.  BACKGROUND 

Computer functionality is a difficult problem to tackle in its inherent nature that each 

set of functionality tests are subjective to whom the machine is important to. If a web server 

hosts an SQL database, the system administrator would say that the database is more 

important than the underlying functionality of the web server that hosts the content. The web 

developer would argue that keeping content available at all times is most important. With 

these subjective views, it is best left to the client to monitor what they feel is the most 

appropriate functionality set and keeps the tests as anonymous as possible with respects to 

which service is integral. 

2.1  Service Scanners 

Network monitoring and service scanning describes the use of a system that 

constantly monitors a computer network for slow or failing components and that notifies the 

network administrator incase of outages.[1] The usefulness of these network monitors is to 

tell the base state of functionality of said machine. For example, to determine the status of a 

web server, monitoring software may periodically send an HTTP request to fetch the page. 

The inherent problem with this is a faulty or compromised system may still a response to the 

query, but the underlying data or functionality is gone. Most of the open source scanners 

will be able to passively monitor services as well as actively monitor them.  

Passive monitoring is a semi-timed query for the service to see if it returns an 

expected response. Typically passive monitoring is easier to do but provides many more 

false positives. This is partially due to the inherent nature of discreet testing techniques. 
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Many passive scanners cannot cope with delay, time out, redirects, or obscure protocol 

behavior. Passive monitors do not interact with the system other than making the initial 

connection and testing whether or not that connection was valid. 

Active monitoring is when a client agent is installed on the computer that you are 

trying to monitor. This client will either connect to or be connected to a server that controls 

the monitoring functions. These functions can range from system level information, such as 

disk space and memory usage, to service information, such as web server load and SQL 

database entries. Active monitoring is much more accurate than passive in the exact nature 

of the monitoring. The scanner is having a greater role; it is having a back and forth 

participatory conversation instead of a one-sided diagnosis. Active monitoring has a major 

downfall in that the agent installed must be configured and compiled for each and every 

machine monitored. While many hosts will be similar in functionality, very few will be 

exactly alike. This causes much more overhead than what should be required. For the 

ISEAGE project, since it is reconfigurable and needs to be able to be adapted to on-the-fly, a 

solution is needed that provides the activeness of agent level scanning but the passiveness to 

remain un-reliant on underlying management issues. This is a major issue when the size of a 

network scales to something much larger. ISEAGE is able to emulate the entire IP range, 

and being able to monitor a sliver of that range needs something new entirely. 

2.1.1  Nagios 

Nagios is an open source host and service monitoring system designed to inform you 

of network problems before your clients, end-users, and managers do. It has been designed 

to run under the Linux operating system, but works find under most UNIX variants as well. 
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The monitoring daemon runs intermittent checks on hosts and services you specify by using 

external “plug-ins” which return status information to Nagios. When problems are 

encountered, the daemon can send notifications to administrative contacts in a variety of 

ways. [2] 

Nagios is one of the largest open source monitoring tools. It has a vast community 

following with many conferences and web forums devoted to its development. It is managed 

by a variety of scripts that build a system baseline in which you can view your network at 

any given time for a snapshot of its status.  Nagios itself is very complex, mainly because of 

the diversity of its functionality. Almost every aspect of Nagios can be customized to fit the 

needs of the network; there are still aspects that require a personal touch to be able to do. 

While there are plug-ins to keep track of certain things within Nagios, none of which have 

been adapted to perform functionality tests instead of status tests. 

In the work done by Stefan Worm on monitoring of large-scale computer clusters, he 

details out how Nagios monitors such services, he uses what is known as the agent module 

of Nagios ,or Nagios Remote Plugins Executor (NRPE) which is installed on the target 

machine and executes commands given by the server architecture. This, unfortunately, is 

unable to act as a third party user accessing the system.  

Each host that is being monitored needs its’ own definition file as well as a definition 

for each service to be monitored. Each host then needs to be grouped into a major hostgroup 

which ties common hosts together based on their role within the network or tie the whole 

network in as one. The screenshot below is an example of the Nagios display of a network 

of host being monitored with multiple services on each host.  
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Figure 1. Nagios status window 

 
The window displays a plethora of useful information, with more information about 

each host by clicking on them. Each service being monitored will give the administrator 

knowledge about the last test that it ran and the results. It is simple to read and effective in 

displaying the health of the overall network.  

2.1.1.1  Limitations 

Nagios has two major parts, a passive scanner and an active scanner. Without the 

ability to utilize the agent component of Nagios, it is infeasible to monitor the active 

functionality of each machine. It is not practical to rely on an active scanner due to the 

invasive nature of active scanners, providing unrealistic results.  
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To keep a fully functional Nagios configuration for multiple networks going and 

changing over time requires constant monitoring and rewriting of tedious configuration files. 

For networks that continue to grow, such at ISEAGE, it becomes infeasible to expect the 

constant attention to configuration files when the time can be better spent reviewing service 

scanning logs and statistical data to prevent future outages. 

Keeping track of the history of a service is just as important as knowing the status of 

a service. It gives a window into what has happened and can predict what might happen in 

the future. If the system administrator can see when a server fails and knows what triggered 

the failure, it is possible to remedy the situation before it causes further complications. The 

simplest way of monitoring is, if the monitoring server actively checks the monitoring 

client directly via a network connection – for this, the server sends a request message to the 

client which sends an answer and finally the server processes the answer. Hereupon the 

server performs an adequate reaction to it which can be also caused by a missing answer, 

depending on the configuration of the monitoring application. With this approach of 

monitoring, for example, it can be checked if the client is up. [11] While it is true to check 

whether the service is up as detailed by Stefan Worm, unfortunately it does not tell us if the 

function is working as intended.  

2.1.2  Zabbix 

Zabbix is an enterprise-class open source distributed monitoring solution. Zabbix is 

software that monitors numerous parameters of a network and the health and integrity of 

servers. It uses a flexible notification mechanism that allows users to configure e-mail based 

alerts for multiple events. [6] 
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One of the major features of Zabbix that Nagios does not provide is event over time 

tracking. This is extremely important when trying to monitor trends over time and report a 

“six sigma” type of service availability to customers. The other major feature is the auto-

discovery which does exactly as it sounds, finds servers on network and populates them into 

the system. Auto-discovery makes possible the evolution of networks without extensive 

overhead of manually reconfiguring the scanner to keep track of said hosts. Below is a 

screenshot of the auto-discovery feature built into Zabbix monitoring two separate IP ranges. 

 

Figure 2. Zabbix auto-discovery interface 
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2.1.2.1  Limitations 

Zabbix was the primary replacement choice for Nagios when originally comparing 

the two, but came under harsh criticism when trying to add customized commands into its 

interface. While the scanner will auto-discover hosts and monitor them with event over time 

tracking, it is not accurate to any scale in which would be effective. In preliminary testing of 

Zabbix, it took between 5 and 25 minutes for it to ‘discover’ that the hosts were no longer 

present on the network. This large gap in time can be serious concern for any system 

administrator. Without the ability to keep a strict rule set in place, it became unpractical to 

use Zabbix as a baseline for SnoScan. The other major hindrance was the inability to 

automate the input of hosts directly into the system without the auto-discovery interface. To 

add a host to the system required the use of a web interface manually entering in each 

system parameters, which is far slower than typing them out for Nagios. 

2.2  ISEAGE 

The Internet-Scale Event and Attack Generation Environment (ISEAGE) is an 

internet test bed developed at the Iowa State University Information Assurance Center. The 

goal of ISEAGE is to provide a world-class research and education facility to enhance the 

current state of the art in information assurance.  Dedicated to creating a virtual Internet for 

the purpose of researching, designing, and testing cyber defense mechanisms, the one-of-a-

kind facility will be the catalyst for bringing together top researchers from several 

disciplines for a common goal of making computing safer. Unlike computer-based 

simulations, real attacks will be played out against real equipment.  [3] 
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 Many researchers and vendors are working hard to provide products and services to 

help defend against cyber attacks.  Users of these technologies often do not have any 

mechanisms to test or even try out these defenses.  Researchers and vendors need a facility 

to test ideas against real-world attacks.  The ISEAGE will provide a controlled environment 

where real-world attacks can be played out against different configurations of equipment.  It 

will contain a vast warehouse of attack tools that will be able to simulate point-to-point and 

distributed attacks against test configurations.  [4] 

 ISEAGE will provide an integrated environment for them to work on synergistic 

research projects in information assurance.  The information assurance research work at 

Iowa State deals with overlapping problems and can benefit from a common laboratory.  For 

example, the group working in intrusion detection and the group working in survivable 

networks often utilize the same attack data and are concerned about the same types of 

attacks.  The proposed laboratory is a critical element needed to elevate research efforts and 

help provide solutions to these complex problems. [4] 

Because of the complexity of many large scale networks and monitoring the status of 

each, ISEAGE proved to be the perfect test bed for SnoScan. Each test case was enacted as a 

third party connecting from a separate network to each target host.  
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Figure 3. ISEAGE Architecture 

 

2.2.1  Cyber Defense Competitions 

Iowa State University plays host to multiple Cyber Defense Competitions each year. 

CDC’s are a chance to explore and demonstrate practical applications of Information 

Assurance defense and attack techniques in a secure environment. Teams are given 
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resources to build and secure a network isolated in the ISEAGE environment. These 

networks are then attacked during the night by a team of experienced intrusion specialists 

whose sole goal is to bring down the networks in the most entertaining way possible. Teams 

are scored for security of their networks, quality of their documentation, usability of their 

systems, and their participation in other fun events during the course of the competition. [5]  

The CDC’s must be monitored and scored with strict consistency. While each test 

would be considered subjective based on the response generated from a test, if the tests are 

uniformly scored on a binary scale, then it is possible to remove the subjectivity involved. 

Each team is required to build and monitor the stability and usability of each system as well 

as have it comply with the guidelines set in place for the contest. These guidelines are meant 

to emulate real world conditions in which a user would encounter on any given day. If the 

functionality were disrupted, then the user will be unable to do what they need to. 

Agent monitors on each client would be a best-case solution if we wanted an 

artificial status monitor. Agent monitoring daemons would be subjected to different sets of 

credentials than a user logging into the server. The agent could have altered permissions to 

do various functions that a normal user would not and obfuscate results. Each functionality 

test will be uniformly similar regardless of underlying software or operating systems on the 

host server. 

2.2.2 IT ADVENTURES 

IT Adventures is an innovative program that engages Iowa high school students in 

exploration and experimentation with Information Technology (IT) through events and 

service learning projects. [7] One of the programs in which the high school students 
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participate is a cyber defense competition. The high school teams (the Blue Teams) play the 

role of IT support staff. They configure a network of four computers and provide services to 

the end users of their network (the Green Team) throughout the event. They also must 

defend their network for an extended period of time from hackers (the Red Team). In 

addition to configuring and protecting their network, the Blue Team will be asked to 

participate in anomalies introduced by the Green Team. By successfully completing each of 

the tasks they better their score for the competition. The Green Team anomalies and 

defending from the Red Team attacks comprise the real-time portion of the competition. 

The high school teams are provided a scenario of a company and the types of 

services they are required to run on their networks in a separate document. Generally, they 

are required to provide domain name service (DNS), email (SMTP and POP/IMAP), file 

transfer protocol (FTP), remote programming and web services. [7] 

IT Adventures takes the ISU CDC to a new level. The scale of the event grows from 

just a handful of teams to 25+, increasing the overhead of scoring and monitoring 

significantly. By providing a baseline monitoring, and subsequently scoring, systems, the 

ability to expand IT Adventures to a larger scale becomes easier from a management 

perspective. 

2.2.3 Information Assurance Capstone Design Course 

The initial concept of SnoScan was for the IT-Olympics and CDC’s held at Iowa 

State, but not limited to these areas. Iowa State created the Information Assurance Capstone 

Design course as an experimental course that emulates all aspects of a CDC but takes them a 

step further. The capstone design course is broken into four major sections: Security design 
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process and security plan creation, Implementation of a security plan, attack and defend the 

implementations, and reporting and analysis. The students will attack each other’s secure 

environments in an effort to defeat the security systems to ultimately learn what security 

means. Students then evaluate the security plans and the performance of the plans. Other 

topics include social, political and ethics issues, journaling, written reports, and an oral 

report. 

The capstone course will encompass all focal points of the degree, culminating in a 

three part capstone course. The three parts include the planning & implementing, defense & 

attack, and assessment of various parts of a network.  

Students would be required to plan a network to include many of the services that are 

provided in an average corporation, including mail, web, programming environments, etc. 

While on a much smaller scale, the intent is to give an idea of why certain security aspects 

are important in their implementation. Each student would be required to give cost/benefit 

analysis on why certain elements were chosen and what other alternatives are available if the 

options presented were not applicable. 

The next portion of the course would be actual implementation of the networks they 

described after their networks were approved by the course instructor and/or teaching 

assistant. It is important that security professionals get hands on approach for the systems 

and devices that they are securing. Following the setup and preparation phase, students 

would then be able to do penetration testing and network analysis against their own and 

other student’s networks. 

Risk assessment in the security field is a vital part. As a final for the course, each 

student would have a written assessment of the security and vulnerability of their networks, 
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what can be improved and what must be changed. Being a distance course, students would 

be required to create a paper and then submit an oral/video presentation of their risk 

assessment analysis. 

 The capstone design course is a vital part of learning information assurance. By 

getting a hands-on approach to security and seeing the entire process from the initial security 

plan to implementation and ultimately reporting, it culminates the knowledge garnered while 

in the Information Assurance masters program.  

2.3  SnoScan 

The purpose for a monitoring tool that is able to play both a passive and active role 

without an agent present on each machine allows us to keep all test cases consistent between 

the uniqueness of each machine and focus on the functionality of the service in question. 

Each service is expected to act in a specific manner. If we are able to eliminate other noise 

and focus on the exact functionality of a service, we are able to objectively rate the 

functionality of it.  While SnoScan is not able to monitor every service available, I chose to 

focus on the services that are typically common on a given network with regards to a CDC. 

If the service can fit inside of a uniform framework, it is possible to expand SnoScan to 

monitor them as well. 
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CHAPTER 3.  IMPLEMENTATION 

This chapter is geared to the implementation of SnoScan. It focuses on defining the 

problem and arriving at a solution that is suitable for the needs of the system. Each problem 

defined has a range of possible solutions, contrasting the differences between each and 

arriving at a suitable baseline. The chapter ends with a short depiction of the tool in 

operation and what results are gathered. 

3.1  Overview 

SnoScan is meant to meet the challenge of a specific problem. Testing functionality 

is subjective in the sense that each service is used differently. By creating a common 

baseline functionality test, one can assume that the functionality is working as intended. 

There are multiple parts of a service scanner and each play an important role. The initial 

setup and configuration requires deep knowledge on what the final implementation will be. 

Below is a flow diagram of the overall process of SnoScan, from creation to result data sets.  
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A process flow model detailing how SnoScan processes from beginning to end
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Figure 4. SnoScan Flow chart 

 
The above diagram lays out how the process and data flows between the different 

sections of the overall process of SnoScan. The data originates from creation in a PHP web 

page by the user or administrator. The data gets passed into both a MySQL table as well as 

flat text files for Nagios to manage the network properly. Once the information is stored in 

both Nagios and a MySQL database, Nagios will execute SnoScan. Snoscan will then be 
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executed with the settings provided by the administrator on the target systems. This test will 

require a conditional statement to verify the results executed by the command. Once the 

conditional statement is executed, the resulting value is passed to both a MySQL database 

and Nagios for an instantaneous snapshot. Once the data enters the MySQL database, a 

dynamic PHP page is used to display the network data, and as such provide a graph to 

display a graphical representation of network uptime. Below is a snapshot of the flow within 

the execution of SnoScan itself.  

 

Figure 5. SnoScan internal layout 
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3.2  Baseline 

After evaluating many of the open source service scanners for their effectiveness and 

reliability, I have selected Nagios as a baseline for SnoScan. While it is entirely possible to 

develop a full functionality service scanner without Nagios, it does provide a few features 

that are useful without re-inventing the wheel.  One of the inherent difficulties as stated 

before was the initial setup management of Nagios. To add or modify services, the 

administrator needs to modify configuration files much like the one below:  

 

Figure 6. Nagios configuration files from the 2008 ISU CDC 
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As you can see from the above screenshot, there are multiple factors that Nagios 

needs to know about. Each host that is being monitored needs to have its’ own unique host 

definition file. This is where one of the difficult particulars arrives when detailing very large 

networks or networks that change rapidly. One can assume that editing each file is time 

consuming in itself, but re-creating each configuration file every time the address, hostname, 

or IP changes is not within the realm of sanity to the average system administrator. Each 

host definition file must contain information about the machine so that it can be instantiated 

properly within Nagios. Each host must have a pre-defined check_command that allows the 

service scanner to know what check to perform. In the above example, it is check_ssh. 

Check_ssh is a preconfigured C program to open a connection to the target address. Nagios 

will attempt to open a connection to the target host based on the address given. This address 

must be pre-defined by the creator of the host file. If the address is invalid or non-

responsive, the test will fail. The problem with many of these passive preconfigured tests is 

their inability to log in after making a connection or test commands on the target host. This 

is where SnoScan takes precedence.  

3.3  Configuration Creator and Database 

One of the first steps in creating a wrapper around Nagios was to make the 

configuration process simpler. In computer terms, a wrapper is something that sits between 

one process and another. In this case, the wrapper is a system to create the configuration 

files for Nagios without the overhead of manually entering in each system one at a time. By 

creating a PHP web application, it is easier to input and modify different values of each host 

without changing the every hostfile. This PHP application is similar to those found in many 
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online application forms, requesting various information as well as authentication so that 

other users do not overwrite pre-existing information. One of the major issues with Nagios is 

that it must be restarted before changes to any configuration get initiated. Fortunately 

through PHP we are able to execute system level commands that check the validity of the 

config files and restart the application automatically. Below is a screenshot of the interface 

created for the 2008 ISU CDC: 

 

Figure 7. ISU CDC Service Scanner Setup Page 
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While simplistic in its nature, it provides the user clear definition of what they want 

to control. Each field serves a purpose for the given system. Let us take FTP for example. It 

asks for a hostname, IP address, port, username, and password. It takes these fields and 

builds a host config file from it so that Nagios can interpret it. The configuration creator then 

takes the information provided and drops it into a database. This database holds a unique ID, 

teamname, host, host IP, the service that is running, a username and password, and what port 

it is running on. This set of data is the minimum needed to perform a connection to the target 

host without making the hosts less anonymous. The rationale for requesting the host IP in 

addition to the hostname is so that if the hostname fails to resolve, it is still able to attempt a 

connection. If the hostname fails but the IP address works, the system will send a warning 

instead of an error flag. The return codes are to notify the system administrator of an issue 

without causing alarm. If the hostname fails but the IP address works, this is an indicator 

that the Domain Name Server is unable to resolve the hostname requested.  Below is a 

screenshot of the database from the 2008 ISU Cyber Defense Competition. 

 

Figure 8. Backend Database for SnoScan 
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As you can see Team 8 is much different than Team 2 in its configuration, as well as 

did not provide a username and password. If the user chooses to ignore these fields, the tests 

simply fall back to the baseline Nagios tests. This will allow the systems to be passively 

monitored for status, but not functionality. The team data is stored with all of the necessary 

information to create a valid connection. Each user and password must be a valid 

combination as if any normal user would be using the service. This is to ensure that any 

outside source is able to access the service without hindrance or manipulation of a specific 

user to allow excess functionality.  Information can vary quite differently from hostgroup to 

hostgroup. This is very common in the real world as well. Each network is unique, and thus 

each configuration is unique. The main problem with manually manipulating each 

configuration file is the scale. When you have four networks with five services each, that is 

a relatively easy number to manage, but when the count gets into the hundreds with six to 

seven services, manually changing each file becomes insurmountable.  

3.4  Nagios Plug-in and Result Table 

Nagios has a simple interface in which to create custom test scripts for use. The only thing 

Nagios expects is a return code. This code ranges from 0 to 3, where 0 is working as 

intended, and 3 is failure with no explanation. Accompanying the return code can be a string 

that is pulled from the test script. Each test script can decide what it deems relevant and 

return it to Nagios. For the default SSH, it will return the first line that is printed to the 

screen after successfully connecting to the server. 
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Nagios by default does not keep track of the past. While it is able to notify an 

administrator of a system failure via e-mail, it is an inaccurate history as to what the service 

was doing over a course of time. The system in place is useful if you wish to have a 

snapshot at any given time, instead we wish to keep data over time so there can be an 

accurate guaranteed server uptime reporting. If this were in a live environment with 

corporations relying on up-to the second information, most corporations tend to try to use 

the Six Sigma process model for detailing the reliability of its services. To do this, each of 

the tests must be recorded in a database for comparisons. Below is a screenshot of the 

database test case from the 2008 ISU CDC.  

 

Figure 9. Result Database for SnoScan 
  

The previous tests were run against the same host in the same format. The only field 

that changed was what is tested and when. It is important to know the exact time that the test 

was performed for heuristics. Each test also has a given output file that references the test 

indicated. The output has the exact commands run on the machine as well as the test 

validity. Each test is unique in its code for verification to give accurate return values to the 

Nagios implementation. Below is an actual output file from SnoScan. The data from the 

terminal is displayed as well as the verification that the test command succeeded.  
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Figure 10. Result File from Testing 

 

3.5  Result Interface 

The purpose of this program is ultimately providing feedback to system 

administrators. While the Nagios interface will give you a snapshot in time of the overall 

status of a network, we care more about the service availability over time. As displayed in 

figure 7, all of the resultant information is stored in a MySQL database, but this is generally 

not a friendly way to represent data to a user or administrator. By creating a web interface 

with various selectable fields, one can effectively view exactly what they want. Below is a 

screenshot of the web interface in which users and system administrators alike can view the 

status of a network.  
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Figure 11. Result interface for SnoScan 

 

The table represented above is a select statement of the result_data MySQL table 

where all of the system information is stored. This select statement finds all elements where 

teamname is equal to the selected item from the drop down menu above it. The above table 

is a representation of all of the SSH tests done to Beta throughout the last two weeks. There 

are multiple different tests that were initiated against the system, testing various aspects of 

the functionality of the shell programming environment. The system is setup to progress 

through a variety of tests sequentially, moving to the next test only if the previous test has 
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been successful represented by a status event of UP. As represented by the table above, it 

shows the teamname, hostname of the system, IP that is tied to the hostname, port, service, 

command run, status, time of the test, and a link file. This link file is probably the most 

important only second to the status field. The link field is a direct link to the output of the 

test, so that if a test fails or succeeds, the administrator can see exactly what occurred. The 

inherent problem with a system of functionality is while you know there is only one exact 

result that is expected to make the test true, there can be multiple points of failure along the 

way. By providing the administrators access to the raw files generated by SnoScan, it opens 

a window into why the functionality is not working as intended. Below is a screenshot 

showing the link file pane below the table. 
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Figure 12. In-depth view of Result File from SnoScan Interface 

 
When the administrator clicks on the LINK, it displays in a pane below the table 

showing exactly what is happening during the test. In the example above, the highlighted 

area was the link that was clicked, referencing the file Beta-ssh-11.25.08-07.27.11.txt. As 

you can see, the test to tell if the test ran successfully was the comparison between –

rwxrwxrwx and what is gathered from the output. –rwxrwxrwx is the file permissions that are 

set when a user chmod’s a file. While this filename seems overly complex, it is necessary to 

keep track of team, service, date, and time for consistency between the systems being 

monitored. This does limit the naming of systems so that each host must have a unique name 
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with regards to its hostgroup Nagios. This is true when dealing with an individual network, 

but not so when crossing multiple domains. As an example, two separate corporations, 

corpA and corpB have external networks that are mutually exclusive, but each internal 

network names their internal mail servers mail.corp.com. To combat overlapping system 

names, we regress to the overall network name, in this case corpA.mail.corp.com and 

corpB.mail.corp.com. 

 

3.6  SnoScan Internals and Functionality 

At the heart of SnoScan is a program that does the actual functionality tests. This 

program is executed through the Nagios configuration scripts when the check_command is 

set to SnoScan. There are three flags that are required when running, -h for host, -s for 

service, and –t for test type. The host flag signifies which network group to poll the database 

for information. Each host inside of a hostgroup is uniquely identified by its 

hostgroup.hostname. This is to differentiate between each groups’ individual networks. 

Since a server can play host to multiple services, the service flag tells the program which set 

of tests to run. Each set of tests has a variety of testing sequences inside of it. There are three 

options for testing functionality: singular, random, or cyclical. Once SnoScan has the 

parameters, it can start pulling data from the database. It pulls out all the essential 

information that it will need to instantiate a connection and run commands on the 

appropriate host.  

It should be noted that the program is actually logging into the target host as the user 

provided when the configuration files were created. This is an important thing to remember 
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when monitoring for security. It is possible that SnoScan will trigger an intrusion detection 

or prevention system in its process of checking the functionality of a host. This is most 

primarily due to its “brute force” technique of testing the connection and subsequent 

functionality. Unfortunately if the connection is interrupted, SnoScan will interpret it as a 

failure and report the incident as such. 

Once the parameters are read from the database, it builds a set of commands to run. 

This is where the test type comes into play. If the administrator specifies the singular test for 

a client running SSH, it will run the very basic command of “touch minifile.txt” every time 

the functionality check is initiated. This is a very rudimentary way to test functionality but 

none the less it provides some vital information. It can show that a user can login remotely 

via SSH and create a file, which in turn tells us the hosts’ file system is intact enough to 

write files to the users’ home directory and that the authentication system is working. The 

next test is random, which is clear by its name, the program chooses one of the multiple 

tests. The last test and most functional is cyclic which will run through each test, 

incrementing in functionality testing. While testing a gamut of functions can present 

problems such as file size limitations or process caps, it is not SnoScan’s job to tell whether 

a user should be able to have twenty simultaneous processes or not but simply to tell if there 

is in fact a limitation on functionality.   

3.6.1  Secure Shell 

SSH is a network protocol that allows data to be exchanged using a secure channel 

between two network devices. Used primarily in Linux and Unix based systems to access 

shell accounts, SSH was designed to replace TELNET and other insecure remote shells, 
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which sent information such as passwords in plaintext. The encryption used by SSH 

provides confidentiality and integrity of data over an insecure network, such as ISEAGE. [8] 

As any student who has taken a computer engineering or computer science course at Iowa 

State has learned how to use a shell environment at some point. It is a fundamental tool for 

the programming world outside of Microsoft Windows. The difficulty with shell 

environments is all users are active on the same environment, making permissions and 

security paramount. The following tests are used by SnoScan to test functionality: 

Test Rationale Conditional Statement 

touch minifile.txt Write to disk (ls –la minifile.txt | wc –l) = 1 

chmod 777 minifile.txt Change permissions ls –la minifile.txt = “-rwxrwxrwx” 

Ls –laR >> minifile.txt  List directories and 

write file 

(filesize of minifile.txt > 0) 

chgrp $USER minifile.txt 

chown $USER minifile.txt 

Change permissions Ls –la minifile.txt = “$USER 

$USER” 

:(){ :|:& };:  

ps | wc –l 

Process limits N/A 

scp scpfile.txt 

$USER@$HOST:~/  

Secure copy If file exists, return true 

Table 1: Secure Shell test cases 

 

Each of the tests provided assesses the core functionality of the underlying shell 

environment in which a typical user would need to interact with it. It is unlikely that a 
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system administrator would restrict any of the above processes as they will critically hinder 

any more complex actions that a user would encounter while in the shell environment. 

3.6.2  File Transfer Protocol 

FTP is a network protocol used to transfer data from oen computer to another 

through a network such as ISEAGE. [9] FTP sites are typically used for uploading and 

downloading files to a central server computer, for the sake of file distribution. In the case of 

the ISU CDC, the FTP server is used to upload data to users’ personal hosted web space. 

FTP runs exclusively over TCP and defaults to port 21 for incoming connections. A 

connection to this port from the FTP client forms the control stream on which commands are 

passed to the FTP server.  Below is the table of cases used to test for FTP functionality: 

Test Rationale Conditional Statement 

put ftp_file.txt Write to disk 226 Transfer OK 

get ftp_file.txt Read from disk 226 Transfer OK 

delete ftp_file.txt Delete from disk 250 File deleted successfully 

mget * Mass read 227 Entering Passive Mode 

cdup Change directory 200 CDUP successful. 

ls List directory 226 Transfer OK 

Table 2: FTP test cases 

 
While the tests above seem simpler than absolutely necessary, it should be noted that 

each plays a vital role in the overall functionality of the FTP server in question. Much 
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similar to the SSH server, if the above functionality is not present, any further more complex 

actions will most likely be inaccessible. 

3.6.3  Internet Message Access Protocol and Simple Mail Transfer 

Protocol 

IMAP and SMTP are two of the most basic forms of e-mail server hosting. Along 

with Post Office Protocol (POP), IMAP is the way clients receive their mail from the server, 

while SMTP is the way that they submit the message to the server. SMTP is a relatively 

simple, text-based protocol, in which one or more recipients of a message are specified 

along with the message text. SMTP typically runs over port 25 and can be connected via 

telnet or a gui-based client on most machines. [10] For the purposes of testing, telnet is 

being used to access these services. IMAP is an application layer internet protocol that runs 

over port 143 that allows local client access to emails on a remote server. Below is the table 

of test cases for both IMAP and SMTP: 
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Test Conditional

SMTP: Telnet $HOST:$PORT 

HELO $HOST 

MAIL FROM: $USER@$HOST 

RCPT TO: snoscan@cdc.net 

DATA <data goes here> 

.  

QUIT 

250 OK 

IMAP: Telnet $HOST:$PORT 

? LOGIN $USER $PASSWORD 

? LIST “” “*” 

? Select Inbox 

? FETCH 1> All 

? LOGOUT 

? OK 

$command 

completed 

Table 3: IMAP and SMTP test cases 

 

IMAP and SMTP are less likely to be compromised in their inherent functionality 

since it is harder to manipulate what you can and cannot do within the service. Since IMAP 

and SMTP are not core to the functionality of the server in which they reside, it is easier to 

manage the software instead of managing the system and software together.  
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3.6.4  Remote Desktop Protocol 

RDP is a multi-channel protocol that allows users to connect to a computer running 

Microsoft Terminal Services. Clients exist for most versions of Windows and other 

operating systems such as Linux and FreeBSD. RDP typically runs over port 3389 and is 

common on many networks, including Iowa State. One of the more difficult portions of the 

protocol is its graphical stream compression. Because of this, automating a process that 

requires interaction is no longer an easy task. With the aid of a third-party tool, we are able 

to test the functionality of a RDP server in a limited capacity. RDesktop is a Linux command 

line tool which allows for login to remote desktop machines from a linux machine to a 

windows machine. With the help of a patch made to RDesktop, it is possible to automate the 

task of checking RDP for availability and limited functionality. RDesktop 1.4.1 is subject to 

a patch which allows for the brute force of a machine given a password file. Fortuantely we 

are not actually brute forcing a machine, but rather giving it a password file with only 1 

password in it. This password is taken from the MySQL database and piped into the 

modified RDesktop, then piped through what is called Xvfb. Xvfb is an X Virtual Frame 

Buffer. This is used for diagnostic effects with relation to graphical interfaces where systems 

that do not have an interface can still execute code that requires it. RDesktop requires the 

user to have a “user desktop” in which to display, but by piping the display to a virtual 

display, we are able to automate and take screenshots of said display without the delay or 

system resources needed to run a full fledged desktop interface. By using RDesktop and 

supplying it with a password file with only the correct password, it will attempt to make a 

connection and log-in with the proper credentials. If the RDP server rejects the username 

and/or password, the RDP server is not functioning as expected.  It is a rudimentary test for 
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a complex protocol, but it should be noted that this already tells us mountains of data about 

the machine if successful, such as the group policies, password restrictions, and logon 

method. 

3.6.5  HTTP 

Nagios by default has a check_http function by default that works relatively well. 

This is due to the fact that it is able to do a search for a specific word through wget. Web 

Get is a program that retrieves content from web servers and is baked in to most Linux 

distributions. While it might be substantial enough to use this test for non-interactive 

functionality test, it does not provide us the rich content in which we live in the internet 

today. If we were simply scraping the website to see whether or not it contained the words 

“Iowa State University” would be simple and Nagios would be effective, but if we wanted to 

see if the Bulletin board or other user interface, we need something more. By doing a 

recursive wget with multiple string searches on that content, we are able to check for deeper 

level inspection. For test cases, we are looking for an automated bot type to make posts to 

phpbb and other web 2.0 interfaces. 
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CHAPTER 4.  RESULTS 

In this section I will detail the findings of running SnoScan over a model network 

setup and the trials for each case. I will then detail the limitations of the system and give 

critical review of areas that need improvement. 

4.1  Findings 

The SnoScan is limited to the time and overall system functionality of Nagios. Since 

Nagios is its host, SnoScan cannot choose when to scan, but merely does the heavy lifting 

and provides the necessary feedback. Since Nagios is the baseline for the system, it is easy 

to get an exact structured time execution from it, running without question at every interval. 

For the CDC’s held at ISEAGE it was recently deemed necessary to check on the interval of 

every five minutes for a reliable uptime average. After doing initial calculations for the 

longest test of 22 seconds for SnoScan to complete an SSH test, in a 5 minute window is 

able to run at least 13 tests on a singular host. Fortunately since all of the historical data is 

stored in an MySQL database which is meant to handle large volumes of data and requests, 

the bottleneck lies with the service scanner being able to service the number of hosts.  

Other issues that arise are the inherent latency issues over a simulated network such 

as ISEAGE. There is a built-in timeout on SnoScan to kill after 2 minutes of inactivity. This 

is specifically for the case where the shell does not break out and is hung. This 2 minute 

window is overly practical for any test that is prepared but is kept incase a system is heavily 
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bogged down and needs time to complete. The kill command is recorded in the result text 

file so that the administrator can see where the test failed.  

 

4.2  Limitations  

SnoScan is also unable to monitor internal network services. Since some networks 

have internal services that are not accessible to the outside world, this is something SnoScan 

cannot handle. Since SnoScan acts like a user from the outside world, it is feasible that this 

is a known limitation of the system, but if placed inside the network and asked to monitor 

the network from the inside, it would be able to keep track of said hosts.  

4.2.1  SSH Limitations 

The shell environment can be manipulated in many ways that look nothing like the 

typical bash shell that is used in the testing. Any specific shell environments not standard to 

the Linux/Unix family will most likely cause the system to error. This can also be caused if 

the PATH variables have been altered in any way. This would cause the user to be unable to 

call commands like “ls”, they would have to use /usr/local/bin/ls or something similar to 

access the command. It is generally noted that if these functionalities are missing from the 

base shell, it is assumed the system is not functioning as intended and will be marked as 

such, though it is up to the system administrator to determine of the status is deemed 

relevant or not.  
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3.6.5  FTP Limitations 

FTP can be operated in a multitude of different ways; unfortunately most of these 

ways involve a graphical user interface or personal knowledge about how it operates. FTP is 

also limited in its security nature, and as such is being phased out for what is called SFTP 

(SSH File Transfer Protocol). FTP also uses two connections to talk between the client and 

server, one for the control which is port 21, and port 20 for the data. Unfortunately the data 

is not always sent over port 20, and can be a random port N > 1023. This can cause issues 

when dealing with firewalls and other IDS/IPS systems. SnoScan cannot handle random 

events other than what is expected through standard FTP protocol return codes.  

3.6.5  IMAP and SMTP Limitations 

While there is more functionality behind IMAP and SMTP than just sending and 

checking mail, the system functionality beyond the tests provided are not necessary to 

determine whether or not it is working as intended. 

3.6.5  RDP Limitations 

RDP is by far the hardest to prove is working functionally due to its graphical nature. 

It is possible to do bitmap comparisons to a baseline configuration, but every user is unique 

and has unique features to their desktops. Just by changing where the start bar is would 

throw off a simple bitmap comparison. Through further analysis one could make accurate 

comparisons between snapshots, but that dabbles into the realm of Captcha cracking in 

terms of difficulty, analyzing bitmaps to find text or information. Captcha is a challenge-

response test used in computing to ensure that the response is not generated by a computer. 
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It is when ordinary text is mangled in ways that only humans should be able to interpret it. 

Unfortunately, most of the Captcha systems currently deployed have been subverted but is 

just with text. Taking a 10 second look at a user desktop can deduce many things about said 

user, but a computer needs strict comparisons to determine a definitive conclusion about 

functionality. One option would be to take an original snapshot of the desktop for each 

system and do a comparison of any subsequent snapshot and find the percent change. If the 

percent was greater than a specified amount, an alert would be sent to the administrator and 

user. 

3.6.5  HTTP Limitations  

Like the RDP limitations, interactive HTTP also suffers from the same graphical 

restrictions, but in a different way. Many of the web interfaces we see are laid out in 

manners that are easy to a user but difficult to interpret to a computer when looking for 

something specific. By using the simple test described above, we are able to minimally test 

the functionality of a website. While this does not give us a clear definition of what some 

might consider functionally sound for a web server, for the purposes of a CDC it will 

suffice. 
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CHAPTER 5.  CONCLUSION 

When researching the ways to functionally test the services on a given host, it 

became apparent that no open source tool would provide the level of depth that was needed 

for the research and events that have been inspired by the ISEAGE project. With the recent 

addition of the capstone design course, it becomes an insurmountable task for one or two 

teaching assistants to constantly monitor and keep track of the status of networks created by 

the students. By having an automated tool to monitor any given network, each with tasks can 

be tailored to look for specific things, such as finding a file on a shell box or downloading 

all the files in a given directory through FTP, we are able to look deeper into the 

functionality of a network when being subjected to vulnerability assessments. 

Each of the tests outlined were for core functionality, but can be expanded upon to 

meet specific user or administrator requirements. The limitations arise when there is 

differentiation between services that cannot be accounted for without prior knowledge of the 

system or require graphical interpretation of the event. By being able to test the functionality 

of multiple networks in a setting such as a Cyber Defense Competition, SnoScan has met 

each of the requirements outlined with many more capabilities that can be added further. 

The following section will detail the future work that can be accomplished on SnoScan. 

5.1  Future Work 

Many of the tests are simplistic in nature, to keep the anomalous details of systems 

down and get valid results for things such as Cyber Defense Competitions and the Capstone 

Design course. The system can be tailored to fit the needs of any text based user-
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authenticated system, as long as it fits within the parameters of the script. One of the goals 

would be to develop SnoScan to handle graphical interfaces, so that it can interact with 

many more services that rely on user input in the Windows environment.  

Expanding upon the configuration system would also give the system more 

versatility, allowing the system administrators greater flexibility and management.  

In the work done by Ilir Bytyci, it would be useful to rank the importance of the 

systems in terms of the overall network using Eigenvector centrality. Eigenvector centrality 

is a measure of the importance of a node in a network. It assigns a relative score to all nodes 

in the network based on the principle that connections to high-scoring nodes contribute more 

to the score of the node in question than equal connections to low-scoring nodes. Google’s 

PageRank is a variant of the Eigenvector centrality measure. This could be used to rank the 

importance of a service if it relies heavily on another service, such as if a web server relies 

heavily on both a MySQL and FTP server for its page content, ranking higher than a stand 

alone telnet service. 
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